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Spectral clustering uses the global information embedded in eigenvectors of an inter-item similarity matrix
to correctly identify clusters of irregular shape, an ability lacking in commonly used approaches such as
k–means and agglomerative clustering. However, traditional spectral clustering partitions items into hard
clusters, and the ability to instead generate fuzzy item assignments would be advantageous for the growing
class of domains in which cluster overlap and uncertainty are important. Korenblum and Shalloway �Phys. Rev.
E 67, 056704 �2003�� extended spectral clustering to fuzzy clustering by introducing the principle of uncer-
tainty minimization. However, this posed a challenging nonconvex global optimization problem that they
solved by a brute-force technique unlikely to scale to data sets having more than O�102� items. Here we
develop a method for solving the minimization problem, which can handle data sets at least two orders of
magnitude larger. In doing so, we elucidate the underlying structure of uncertainty minimization using multiple
geometric representations. This enables us to show how fuzzy spectral clustering using uncertainty minimiza-
tion is related to and generalizes clustering motivated by perturbative analysis of almost-block-diagonal ma-
trices. Uncertainty minimization can be applied to a wide variety of existing hard spectral clustering ap-
proaches, thus transforming them to fuzzy methods.
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I. INTRODUCTION

Coarse-graining data items i �1� i�N� into clusters �
�1���m� is important for large-scale data analysis �1–3�.
For example, clustering genes according to their microarray
expression profiles allows biologists to subsequently infer
potential cis-regulatory elements from sequence commonali-
ties within the clusters �4�. Clustering typically proceeds
from a symmetric N�N similarity matrix S, where the non-
negative off-diagonal element Sij provides an inverse indica-
tor of the “distance” dij between items i and j. The primary
input �e.g., the alignment scores from sequence comparisons
or edge weights of a graph� may directly define the Sij. Al-
ternatively, the data may consist of ND properties for each
item that can be embedded in a dataspace. For example, in
microarray analysis each gene is an item, and its properties
are its ND expression levels under ND different conditions. In
that case, the dij are derived from the �not-necessarily Eu-
clidean� distances between the items in the dataspace.

Spectral clustering methods ��5,6� for history and review�
analyze the eigensystem of a transition �or Laplacian� matrix
�, which is derived from S. Since the eigensystem depends
globally on the entire data set, spectral methods have a per-
spective lacking in commonly used methods such as k-means
and agglomerative clustering �2�, which directly analyze the
Sij. Their dependence on pairwise similarities leads them to
impose characteristic cluster shapes; e.g., k-means and
complete-linkage clustering generate convex clusters while
single-linkage clustering generates unbalanced and straggly
clusters �2�. These shapes may not reflect the true geometries
of the problem, such as the irregular boundaries of a subject
within an image �7�. The ability of spectral methods to gen-
erate arbitrary cluster shapes lets them outperform k-means

across several benchmarks �8–10�. As we will see, they can
also determine the optimal number of clusters automatically.

� typically satisfies �11,12�

� = �S · D�
−1, �1a�

�ij
S = − Sij �i � j� , �1b�

�ii
S = �

j�i

Sji, �1c�

1 · � = 0, �1d�

where D� is a diagonal normalizing matrix with non-
negative elements satisfying Tr�D��=1, 1 is the item-space
vector having all components equal to one, and · denotes the
normalized item-space inner product:

x · y � N−1�
i=1

N

xiyi.

These conditions emerge when spectral clustering methods
are used to approximate “min-cut” graph partitioning solu-
tions �13,14� or when they are motivated by discrete-time
�15–19� or continuous-time �10� dynamical models. �The
first two motivations lead to analysis of the Markov matrix
T� I−� �where I is the identity matrix�, which satisfies
1 ·T=1 rather than Eq. �1d�. But since the eigenvectors of T
and � are identical and the eigenvalues are simply related,
the same analysis applies with inconsequential changes.�

Equations �1� imply

�0 = 0, �2a�

�0
R � N� , �2b�

�0
L = 1 , �2c�
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�n
L = D�

−1 · �n
R, �2d�

where �n
L and �n

R are the biorthogonal left and right eigen-
vectors of �, which we normalize such that �m

L ·�n
R=�mn and

�n
L ·�n

L=1, and � is the right equilibrium probability vector
satisfying �i�i=1. It follows that �D�

−1�ii=�i
−1. Eqs. �1� also

imply that �ij� j =� ji�i �i.e., that detailed balance holds�,
which ensures the reality and non-negativity of the eigenval-
ues �20�.

Spectral methods begin by embedding each item i into the
low-frequency �or clustering� subspace Rm using as coordi-
nates the m low-frequency vector components of �� L�i�
���0

L�i� ,�1
L�i� , . . . ,�m−1

L �i�� �21�. These are then used to
identify m clusters �22�. Clustering �i.e., spatial coarse grain-
ing� is possible only if there is a gap in the distribution of the
similarities Sij �23�.

The dynamical interpretation of spectral clustering pro-
vides a way to find a gap if it exists: each cluster is viewed as
a metastable state of a diffusive relaxation process governed
by � �24�

dp�t�
dt

= − � · p�t� , �3�

where p�t� is a time-dependent probability vector over the
discrete space of items �i.e., pi�t� is the probability of occu-
pation of item i at time t�, −�ij is the stochastic transition rate
from item j to i, and Eqs. �1c� and �1d� ensure that probabil-
ity is conserved. Because of the inverse relationship between
eigenvector “wavelength” and eigenvalue, a spatial-scale gap
in the distribution of the Sij will appear as a time-scale spec-
tral gap:

0 = �0 	 �1 	 ¯ 	 �m−1 
 �m. �4�

The gap between �m−1 and �m indicates the existence of m
clusters. When a spectral gap exists, the long-wavelength
clustering eigenvectors �n	m

L will contain the information
needed for clustering �25�.

For example, Fig. 1 illustrates the m=3 “spiral” clustering

problem posed by 77 items embedded in a two-dimensional
dataspace and the corresponding eigensystem of the � matrix
of Ref. �10� �see Eqs. �24� below�. Panel �a� shows the spa-
tial locations of the items, and it is subjectively evident that
there are three interlocking clusters. Correspondingly, as pre-
dicted by Eq. �4�, there is a gap between �2 and �3 �panel
�c��. The clustering eigenvectors �1

L �panel �d�� and �2
L

�panel �e�� vary significantly only at the cluster boundaries
and follow their distorted shapes. Thus, the shapes of the
clusters defined using these eigenvectors will not be artifi-
cially restricted. In contrast, the nonclustering eigenvectors
such as �3

L �panel �f�� have large variations within clusters
and thus are not used in the clustering analysis.

It remains to define the clustering from the clustering
eigenvectors. Hard spectral clustering approaches do so sim-
ply by applying nonspectral methods such as k-means within
the clustering subspace �9�. However, there are problems
where hard partitioning is neither necessary nor ideal, for
example, the separation of cell subpopulations by
fluorescence-activated cell sorting �FACS� �26�, automated
biological database curation �27�, complex network analysis
�28�, and gene expression analysis �29�. Such problems re-
quire fuzzy clustering that can represent uncertainty and
overlapping clusters.

Nonspectral fuzzy clustering methods have already been
applied to such problems �28,29�, but spectral fuzzy methods
could be advantageous because of their added ability to cope
with irregular cluster boundaries �e.g., those within FACS
dataspaces �26��. Moreover, fuzziness could provide further
benefit in areas where hard spectral clustering has already
been applied. For example, Paccanaro et al. �27� have used
hard spectral clustering to faithfully reproduce many of the
superfamily classifications from a subset of the structural
classification of proteins �SCOP� database �30�; a fuzzy spec-
tral approach would add the ability to assess the certainty of
such classifications.

Formally, fuzzy clusterings are described by assignment
vectors w���w��1� ,w��2� , . . . ,w��N��, where w��i� is the
probability that item i is a member of cluster � and therefore
must satisfy the probabilistic constraints

w��i� � 0 �∀ �,i� , �5a�

(a)
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0

(b)
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ψL
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2

(e)

ψL
3
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FIG. 1. The “spiral” clustering problem and its eigensystem. �a� The two-dimensional embedding of the spiral data set in dataspace. ��b�,
�d�, �e�, �f�� The �positive or negative� heights of the cones indicate the values of the clustering eigenvectors �0

L, �1
L, and �2

L, and of the first
nonclustering eigenvector �3

L of the data set’s �. �c� The corresponding eigenvalues. Unless otherwise noted, figures are based on the �
matrix defined by Korenblum and Shalloway �10� �see Eqs. �24��.
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�
�

w��i� = 1 �∀ i� . �5b�

To define these in a spectral context, following Ref. �10� we
use the low-frequency clustering eigenvectors as a linear ba-
sis for the w� �31�:

w� = �
n=0

m−1

M�n�n
L � M� � � �L� , �6�

where the M� ���M�0 ,M�1 , . . . ,M��m−1�� are m-vectors, �L�
���0

L ,�1
L , . . . ,�m−1

L �, and � denotes the inner product over
the low-frequency subspace:

x� � y� = �
n=0

m−1

xnyn.

Equation �6� transforms the clustering problem to that of
finding the “best” M� � subject to Eqs. �5�. Korenblum and
Shalloway �10� proposed that this was the one that mini-
mized overlap between assignment vectors: since the w� are
non-negative and composed of only the long wavelength
�n	m

L , they will inevitably overlap each other and thus will
give uncertain �i.e., fuzzy� item-to-cluster assignments. This
uncertainty is minimized when the clusters’ self-overlap is
maximized. The self-overlap of cluster � can be quantified

by the fractional cluster certainty �̄��M��1���m� �10�,

�̄��M� �
�w��w�	
�1�w�	

�N−1 � �̄��M� � 1� , �7�

where M represents the components of all the M� � and bra-
ket notation denotes the equilibrium-weighted inner product
�32�

�x�y	 � x · D� · y . �8�

�̄��M�=1 when the cluster � is completely certain, i.e.,

w��i�=0 or 1; the total certainty is the product of the �̄��M�
for all the clusters. Thus, the optimal M is determined by
uncertainty minimization of the overall uncertainty objective
function,

�M� � − �
�

log �̄��M� , �9�

subject to the constraints of Eqs. �5�. Korenblum and Shal-
loway showed that this procedure provided good fuzzy clus-
terings of a number of difficult problems. However, they
solved the resulting challenging constrained nonconvex un-
certainty minimization problem using a “brute-force” solver
whose O�m2Nm+1� computational complexity limited its ap-
plication to modest-sized problems �N=200� and precluded
application to the larger problems �e.g., N
O�104�� that
emerge in areas such as gene microarray analysis �33�.

A closely related approach was independently developed
by Weber et al. �18�. They also used Eq. �6� but, instead of
using uncertainty minimization, determined the M through
an efficient but approximate method motivated by perturba-
tive analysis of almost-block-diagonal matrices �34�. Their
Perron cluster cluster analysis �PCCA� defined the w� as

“membership functions” that only approximate the probabi-
listic constraints of Eqs. �5�. In PCCA the M are determined
algorithmically rather than by objective function optimiza-
tion, and clusterings for different values of m are accepted if
the resultant approximation is regarded �by subjective crite-
ria� to be adequate. While approximate, this method had the
advantage of being computationally simpler than the initial
uncertainty minimization algorithm of Korenblum and Shal-
loway �10�.

Thus until now, practical exact fuzzy spectral data clus-
tering has remained elusive. To resolve this problem, here we
develop an efficient method for uncertainty minimization and
show that it is generally applicable to any spectral clustering
method satisfying Eqs. �1�, including popular asymmetric ap-
proaches based on random walks over graphs �15–19�. Thus,
we imbue a wide range of hard spectral clustering methods
with the ability to compute fuzzy cluster assignments and,
thereby, uncertainty and cluster overlap. In the process, we
show that there are multiple geometric interpretations of the
uncertainty minimization problem that can be used to illumi-
nate its structure. Through these we relate uncertainty mini-
mization to PCCA and extend the previously reported condi-
tions under which the PCCA approximation is applicable.

II. COMPUTATIONAL THEORY

Minimization of �M� subject to the constraints of Eqs.
�5� poses a global nonlinear optimization problem in the m2

degrees of freedom of M. To solve this it is convenient to
re-express Eq. �9� explicitly in terms of the M� � as

�M� � − �
�

log �̄��M� = − �
�

log
M� � � M� �

M� � � �̂0

, �10�

where �̂0 is the m–vector �1,0,…,0�, and we have used
�w� �w�	=M� � �M� � and �1 �w�	=M� � � �̂0, which follow from
Eqs. �2c�, �2d�, and �6� and the biorthogonality of the eigen-
vectors. Similarly, we re-express Eqs. �5� in terms of the M� �:

w��i� = M� � � �L��i� � 0 �∀ �,i� , �11a�

�
�

M� � = �̂0. �11b�

Because �M� is invariant under permutations of the indices
associated with the clusters, its global minimum will have an
m!-fold permutation degeneracy.

We now describe two geometric representations that illu-
minate the problem �Sec. II A� and then show how to solve it
in three steps: �1� precondition � to avoid numerical noise
that can obfuscate spectral gaps when low-lying eigenvalues
are nearly degenerate, to improve numerical efficiency, and
to remove outliers �Appendix A�, �2� find a zeroth-order so-
lution �Sec. II B�, and �3� iteratively refine using linear pro-
gramming with a subset of the inequality constraints to de-
termine the solution to the desired accuracy �Sec. II C�.
Since the procedure explicitly uses only the �n

L, for nota-
tional convenience we subsequently denote them simply as
the �n.
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A. Geometric representation of uncertainty minimization

1. Symmetric M representation

Each M� � may be regarded as the coordinates of a particle
� in Rm with axes labeled X0 ,X1 , . . . ,X�m−1�. Equation �11a�
implies that the same N inequality constraints act on each
particle; thus they restrict each one to the same half-space in
Rm that is bounded by a hypersurface passing through the
origin and normal to �� �i�. The intersection of these half
spaces determines the feasible region as a convex polyhedral
cone in the upper half of Rm. Only a subset of the inequality
constraints will actually bound the feasible region since their
satisfaction will automatically guarantee satisfaction of the
other constraints. And, as proved in Appendix B 1, each par-
ticle lies on an edge of the polyhedral cone �i.e., is con-
strained by m−1 active inequality constraints� at every local
minimizer of �M�.

An example of this symmetric M representation for an
m=2 problem �based on the “crescentric” bivariate data set
of Ref. �2�� is shown in Fig. 2�a�. �It is only in the m=2 case
that a simple graphical representation is possible; nonethe-
less it is useful for illustrating structural properties that also
hold when m�2.� In this case, the feasible region is bounded
by only two lines corresponding to X� ��� �i	�=0 and X�

��� �i��=0, where i	 and i� are the minimizer and maximizer
of �1�i�, respectively. The global minimum of  corresponds
to the unique �up to the permutation degeneracy� situation
where each particle lies on the feasible region boundary
while the equality constraints of Eq. �11b� are simultaneously

satisfied. In Fig. 2�a�, this is when the points are located at
the two squares on the boundary. The two ways of associat-
ing the particles with the squares corresponds to the twofold
permutation degeneracy of the solution.

2. Asymmetric M representation

The m particles in the symmetric M representation are not
independent because of the equality constraints �Eq. �11b��.
We use these in the asymmetric M representation to explic-
itly eliminate the degrees of freedom of one slave particle
that, without loss of generality, we take to be M� m:

M� m = �̂0 − �
��m

M� �. �12�

The homogeneous inequality constraints on the slave, M� m

��� �i��0�∀ i�, transform into inhomogeneous inequality
constraints that couple the remaining m−1 free particles:

�
��m

M� � � �� �i� � 1. �13�

We consolidate the m�m−1� degrees of freedom of the free
particles into the supervector M� free having components
�M� 1 ,M� 2 , . . . ,M� m−1� in Rm�m−1�. Optimization then proceeds
in Rm�m−1� with the M� free restricted by �m−1�N homogeneous
inequality constraints from Eq. �11a� with �	m and N in-
homogeneous inequality constraints from Eq. �13�. The com-
bination of homogeneous and inhomogeneous inequality
constraints forms a closed convex polytope that bounds the
feasible region. Each local minimum of �M� �and thus, the
global minimum� lies at a vertex of this polytope �10�.

An example of the asymmetric M representation for m
=2 is shown in Fig. 2�b�. In this case there are four bounding
constraints: two homogeneous inequality constraints having
boundaries passing through the origin and two inhomoge-
neous inequality constraints �from the slave cluster� with
boundaries intersecting at �̂0 �35�.  is infinite at the poly-
tope vertices at the origin and �̂0. The two other vertices
correspond to index-permutation-equivalent global minima.

The minimization problem can be visualized and easily
solved in this manner only for m=2: as m increases the num-
ber of polytope vertices, and hence the number of local
minima, grows rapidly, and the global minimization problem
becomes difficult. Korenblum and Shalloway �10� solved
this by an expensive random exploration of the vertices.

B. Cluster representatives and the approximate global
solution

1. Representatives

We take a different approach: rather than trying to identify
the minimizing vertex directly, we exploit the fact that the m2

components of M can be determined by the m2 low-
frequency components of an appropriately chosen subset R
= �r1 ,r2 , . . . ,rm� of m items, which we call representatives.
To make this explicit we write a matrix analog of Eq. �6�
over R as

−1 0 1
0

1

X
0

X1

(a)

−1 0 1
0

1

M11

M
1
0

(b)

FIG. 2. Symmetric and asymmetric M representations of the
m=2 “crescentric” problem �2,10�. �a� Symmetric M representation:
the diagonal lines indicate the boundaries formed by the inequality
constraints. The two bold lines forming the narrowest cone �shaded�
define the feasible region in Rm=R2. M� 1 and M� 2 are represented by
dots. They are not independent since they are further constrained by
the equality constraints of Eq. �11b�. The global minimum of the
uncertainty objective function �M� corresponds to the dots being
located at the positions indicated by small squares, and the invari-
ance under particle exchange corresponds to the permutation degen-
eracy discussed in the text. �b� Asymmetric M representation: the
solid lines indicate the boundaries of the homogeneous inequality
constraints acting on the free particle M� free=M� 1. The dashed lines
indicate the boundaries of the inhomogeneous inequality constraints
that derive from the slave particle M� 2. Two of these �bold-dashed�
lines cap the cone formed by the relevant homogeneous constraint
boundaries �bold� to define a closed feasible polytope in Rm�m−1�

=R2. In this representation the single dot represents all m�m−1�
=2 components of M� free. �M� is minimized at either of the two
permutation-degenerate solutions �small squares�.
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WR = M � �R, �14�

where

W��
R � w��r�� �1 � �,� � m� , �15a�

�n�
R � �n�r�� �1 � � � m�

�0 � n 	 m� � , �15b�

and M is the matrix having the M� � as its rows. According to
Eq. �11b�, M must satisfy

�
�

M�n = �n0. �16�

As shown in Appendix B 2, there always exists at least one
subset R such that �R is invertible. With such a subset we
can solve Eq. �14� for M:

M = WR • ��R�−1, �17�

where • denotes the inner product over the cluster index �.
The usefulness of Eq. �17� may be questioned since a

priori we do not know any WR exactly. However, any data
set amenable to clustering will have at least one item per
cluster that will be strongly assigned in the clustering solu-
tion; we call such items candidate representatives. If we
could select a set of representatives Rc containing one can-
didate representative from each cluster, we could use our
approximate foreknowledge of their assignment values at the

solution, WRc
�

, to approximate M at the solution, M�, via Eq.
�17�.

For example, if item i� were a candidate representative for
cluster �, its assignment in the clustering solution would be
�36�

w�
��i�� � ���. �18�

By choosing r�= i� and making similar choices for the other
clusters, we would get

WRc
�

� I .

This zeroth-order estimate could be used to approximately
solve Eq. �17� for M�:

M� � WRc
�

• ��Rc�−1 �19a�

�I • ��Rc�−1 = ��Rc�−1 � M0.

�19b�

In agreement with Eq. �16�, M0 would satisfy �37�

�
�

M�n
0 = �n0. �20�

Knowing M0 would allow us to define zeroth-order estimates
w�

0 for all the items via Eq. �6� with M� �=M� �
0 , where the M� �

0

are the rows of M0:

w�
0 = M� �

0 � �� . �21�

However, the w�
0 would not necessarily satisfy the inequality

constraints of Eq. �5a�. If they did, they would solve the

optimization problem �see Sec. II C 1�. If they did not, they
would provide a starting point for refining the solution as
discussed in Sec. II C.

2. Finding Rc

Equation �19b� implies that we only need to find the rep-
resentatives to determine M0. This is trivial when m=2: the
two active inequality constraints �identified by either pair of
intersecting bold and bold-dashed lines in Fig. 2�b�� come
from the extremal items r1 and r2 of �1, i.e., the minimizer
and maximizer of �1�i�. Thus, at the solution w1

��r2�=0 and
w2

��r1�=0, and the equality constraints imply that w1
��r1�=1

and w2
��r2�=1: r1 and r2 not only generate the active con-

straints but are also the representatives, which in this case are
perfectly assigned in the solution.

The situation is more complicated when m�2. The rep-
resentatives: �1� may not be maxima and minima of the
eigenvectors, �2� may not be the items associated with the
active constraints, and �3� may not be perfectly assigned at
the solution. Nonetheless, as discussed above, they will sat-
isfy w��r������, and we will use this property to identify
them.

We show how this is done using the m=3 spiral problem
as an example �Fig. 3�. Its three low-frequency clustering
eigenvectors are shown in panel �b�, and the representatives
that we would like to find are identified by circles, triangles,
and squares. To find Rc we imagine that we know M� and
the corresponding assignment vectors w�

� so that we can map
the items into Rm at the points specified by the 3–vectors
w̄��i���w1

��i� ,w2
� , �i� ,w3

��i�� in panel �c� �38�. Because the
w̄��i� satisfy the probabilistic equality constraints, these
points lie in the two-dimensional plane that is normal to the
vector �1,1,1� and at distance 1 /�3 from the origin. More-
over, because they satisfy the probabilistic inequality con-
straints, they lie within an equilateral triangle in this plane.
�We use “within” to include points that lie on the boundary.�
This provides barycentric coordinates �39� in which the three
vertices of the triangle correspond to the cluster assignments
�1,0,0�, �0,1,0� and �0,0,1�; we will call these the �=1, 2, and
3 vertices, respectively. The three components of w̄��i� are
given by the three distances of point i from the three sides of
the triangle. Thus, if point i lies on the side of the triangle
opposing vertex �, the inequality constraint w��i��0 is ac-
tive. We call this the w̄� representation �panel �c��. Although
it may not be evident in the figure, consistent with the even
distribution of active inequality constraints between the clus-
ters �Appendix B 1�, each side of the triangle intersects ex-
actly two items.

The candidate representatives are the items that are close
to the three vertices, and we want to choose one from the
vicinity of each vertex to compose Rc. We can do this by
choosing the three items that �when taken as vertices� define
the triangle of largest area. It is easy to show that the trian-
gular area defined by any subset R of three items located at
their solution positions is �WR�

� / �2�3�. Thus, we can find a
good Rc by finding the subset R that, via Eq. �14�, maxi-
mizes �WR�

�.
Since we do not actually know M� or the w̄��i�, it is not

obvious how to proceed. However, Eq. �14� implies that
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�WR�
� = �M����R� , �22�

so, since M� is fixed �though unknown�, selecting the R that
maximizes �WR�

� is equivalent to selecting the R that maxi-
mizes ��R�. This is straightforward because �R does not
depend on M. Formally, maximizing ��R� is a combinatoric
problem that could be solved by comparing the determinants
for all subsets R. However, this would be exponentially ex-
pensive in N. Instead we use an efficient greedy algorithm
that selects the representatives solely from the subset of can-
didate representatives. This may not exactly maximize the

determinant but will be adequate to determine an Rc that
gives, via Eq. �19b�, an M0 that can be used as a starting
point for refinement.

We leave the details of the greedy algorithm to Appendix
C, but it is useful to establish its geometric framework here,
continuing to use the spiral problem as an example: we first
plot each item in the two-dimensional �� � representation us-
ing the 2-vector �� ��i�= ��1�i� ,�2�i�� �panels �d� and �f��.
�No information is lost in the projection from the low-
frequency subspace since �0�i�=1�∀ i�.� These vectors are
independent of M �40�; rather, in this representation M de-
termines the position of the inequality constraint bounding
triangle. As explained in Appendix B 4, the �� � coordinates
of the three bounding triangle vertices are the columns of the
bottom two rows of M−1. When M =M� �panel �d��, the ver-
tices may not coincide with any items, but all the items will
lie within the bounding triangle. When M =M0 �panel �f��,
the vertices of the triangle coincide with the representatives,
but some items may violate the inequality constraints and lie
outside the triangle. �Four items in the upper left corner are
outside the triangle in this example.� The greedy algorithm
operates within the �� � representation to identify Rc.

The approach generalizes easily to higher m: the w̄��i� are
now m-vectors. The w̄� representation is in an
�m−1�-dimensional hyperplane normal to the vector
�1,1,…,1� in Rm and provides barycentric coordinates for the
w̄��i�. Rc is comprised of the subset of m items that, when
located at their solution positions in the w̄� representation,
are the vertices of the �m−1�-simplex of largest hypervol-
ume. This hypervolume, for any subset R, is proportional to
�WR�

� so, via Eq. �22�, we can transform the problem of
selecting Rc to that of finding the m items that maximize
��R�. This problem is equivalent to maximizing the hyper-
volume of the �� �-representation simplex having vertices at
��� ��i� : i�R�. Once Rc has been identified, it is used to
determine M0 via Eq. �19b�, and M0 is used to determine w�

0

via Eq. �21�.

C. Refinement

1. Case when M0 is the exact solution

If the w�
0 satisfy all the inequality constraints, they pro-

vide the unique solution to the uncertainty minimization
problem. To prove this, consider the �� � representation of an
m=3 problem where the inequality constraints are satisfied.
As in the spiral problem, the representatives are at the verti-
ces of the �� � triangle determined by M0, and as discussed
above, transforming M0 to M moves the sides of this tri-
angle. Moving any side inwards would leave a representative
outside the triangle, thus violating an inequality constraint.
And, since all points are already within the triangle �i.e., all
inequality constraints are satisfied�, moving any side out-
wards would result in that side contacting less than two
points, i.e., one of the clusters would have less than the re-
quired �Appendix B 1� m−1=2 active inequality constraints.
Therefore, in this case M�=M0 must be the unique solution.
As can be inferred from the analysis of Fig. 2, M0 is always
the unique solution for m=2 problems.

(a)

ψ0

ψ1

ψ2

(b)

w̄�representation
−→
ψ

⊥
representation

(1,0,0) (0,1,0)

(0,0,1)

(c)

ψ1

ψ2

(d)

(M∗)−1

−−−−−→←−−−−−
M∗

(1,0,0) (0,1,0)

(0,0,1)

(e)

ψ1

ψ2

(f)

(M0)−1

−−−−−→←−−−−−
M0

FIG. 3. w̄� and �� � representations of the spiral problem. The
items are represented �a� in the dataspace as peaks with magnitudes
determined by their maximal assignment, �b� in the clustering �low-
frequency� eigenvector representation, �c� and �e� in the barycentric
coordinates of the w̄� representation, or �d� and �f� in the �� � rep-
resentation. Panels �c� and �d� correspond to the refined solution
M�, while �e� and �f� correspond to the zeroth-order solution M0.
The solid and dotted triangles denote the M� and M0 feasible region
boundaries. �The solid triangle is superimposed in panel �f� to show
how the triangle expands slightly in the �� � representation during
refinement. The arrow indicates the item that becomes an active
constraint in M�.� The left and right arrows connecting the repre-
sentations are reminders that M determines the positions of the
items in the w̄� representation and of the triangle vertices in the �� �

representation. �Although it may not be evident in the figure, the
points in panels �c� and �e� and the top vertex in panels �d� and �f�
are at slightly different positions.� The different shades of gray in
panel �a� denote the hard clustering obtained by quantizing the
fuzzy clustering, while the height of a cone shows the strength of
the probabilistic assignment of the item to the cluster. The ordering
of items in panel �b� was chosen post facto to separate the clusters.
The dashed lines in this panel are at �n�i�=0. The representatives
for clusters 1, 2, or 3 are enclosed within triangles, circles, or
squares, respectively.
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2. Linearizing �(M)

If the w�
0 violate any of the inequality constraints, M0 is

not a solution but can be used as the starting point for further
refinement. Since it is expected to be near M�, we can ex-
pand the objective function in its neighborhood to first order
as

�M� = �− �
�

log
M� � � M� �

M� � � �̂0

� �M0� + �
�

�M� � − M� �
0� � �� ��M��

M=M0

,

�23�

where

�� ��M� �
��M�

�M� �

= − 2
M� �

�M� ��2
+

�̂0

M� � � �̂0

is the gradient of �M� with respect to M� �. Local minimi-
zation using this linear approximation and the constraints of
Eqs. �11� pose a linear programming �LP� problem, which
can be solved by standard methods.

A simple approach would be to: �1� apply LP using Eq.
�23� and all the constraints to find an improved, constraint-
satisfying solution M1, �2� set M0←M1, and �3� repeat �1�
and �2� until sufficient convergence is achieved. This
amounts to constrained gradient-descent local minimization.
However, we do not expect to encounter the slow conver-
gence problems that sometimes plague gradient descent be-
cause all the LP solutions, as well as the true solution, are at
vertices of the feasible polytope �41�. Therefore, even the
first iteration will drive the solution to a vertex, and the so-
lution will not change at the next iteration unless the vertices
are very dense on the scale set by the curvature of �M�.
Thus, rapid convergence is expected.

3. Reducing the number of constraints included in LP

However, the cost of standard LP solvers �e.g., simplex
and interior point methods� grows rapidly �O�Nc

1.5�� with the
number of constraints Nc, which may be large �42�. While
there are mN inequality constraints, only m�m−1� of these
are active at M�. These alone need to be included in the LP
problem to guarantee that all the inequality constraints will
be satisfied. Since we will often be interested in problems
where m
O�10� and N
O�104�, it would accelerate the LP
solver by multiple orders of magnitude if the number of con-
straints provided to it were reduced to O�m2�.

We do not know the active constraints a priori but can
find them rapidly by an iterative procedure that exploits the
fact that �as discussed above� at M� exactly m−1 points will
lie on each of the m faces of the bounding simplex in the �� �

representation. To motivate this procedure, consider the re-
finement of the spiral problem �Fig. 3�. The left side of the
�dotted� M0 triangle �panel �f�� must move outwards to in-
clude the four points in the upper left region that are ex-
cluded from its interior; this motion must leave the side in-
tersecting two points. Because the objective function �M�

constitutes an inward “pressure” on the triangle, M� will cor-
respond to the situation where the smallest expansion that
can accomplish this is used. Consequently, the left side will
pivot outwards about the lower left corner until it intersects
the item identified by the arrow. Each side of the resulting
M� triangle �panel �d�� will intersect m−1=2 points, and
these points will be near �but not identical with� the m=3
vertices of the M0 triangle. These six intersections will iden-
tify the m�m−1�=6 active constraints.

This suggests that, for m=3 in general, the two points
lying on a side of the M� triangle will be near different
vertices and, subject to this restriction, will be the points that
are farthest outside the M0 triangle. This observation easily
generalizes to m�3: Each of the m faces of the M� simplex
will contain m−1 item points, each near a different vertex.
These m�m−1� points are the most likely to lie outside the
M0 simplex. Thus, it is sensible to initially attempt a LP
solution using only the inequality constraints corresponding
to these m�m−1� face-item point pairs. �If point i lies on the
face opposing vertex �, this face-item pair corresponds to the
active inequality constraint w��i�=0.� However, this is only a
heuristic argument, and inequality constraints may still be
violated in the partially constrained LP solution. If so, we
iterate while adding to an included constraint list C �of face-
item pairs� the violated constraints that are identified by the
above criteria as most likely to be active. The procedure
terminates when all the inequality constraints are satisfied.
Termination is guaranteed because inequality constraints are
only added to, and never removed from, the included con-
straint list. The procedure is formalized below.

4. Refinement algorithm

�1� Initialize C to the empty set.
�2� Perform hard clustering based on the M0 assignments:

item i is assigned to the cluster �vertex� � that maximizes
w�

0�i�. We call this subset of items S�.
�3� Identify the item �designated i�� from S������ that

is farthest outside the face opposing vertex �. This identifies
the m−1 constraints corresponding to the face-item pairs
�� , i� :����. As shown in Appendix B 5, the ordering of the
item points relative to the simplex faces is the same in the w̄�

and �� � representations. Therefore, we determine the order-
ing in the w̄�-representation barycentric coordinates since
this is simple: w��i� is the distance of an item point i from
the �-opposing face �positive if inside, negative if outside
the simplex�. When executed for all m faces this procedure
identifies m�m−1� inequality constraints C�.

�4� C←C�C�.
�5� Apply the LP solver with the equality constraints, the

inequality constraints in C, and the linear objective function
approximation of Eq. �23�.

�6� Check for satisfaction of all inequality constraints and
for convergence according to max�,i�w�

1�i�−w�
0�i��	�LP,

where �LP is a small number and w�
1�i� and w�

0�i� are the
values determined by M1 and M0, respectively. If both con-
ditions are satisfied, terminate with M�=M1; if not, set M0

←M1 and return to step 2.
When the algorithm is applied to the spiral problem, C is

set to the active constraints in a single step �43�.
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III. OVERALL COMPUTATIONAL ALGORITHM

Combining the steps described in Sec. II, the overall al-
gorithm is as follows:

�1� Compute and precondition � as described in Appendix
A.

�2� Compute 20 �44� low-frequency clustering eigenval-
ues and eigenvectors using the Lanczos method �45�. This is
more efficient than computing the full eigensystem but will
converge slowly if the eigenvalues are densely packed near
zero �as they often are�. To exclude this possibility we em-
ploy a shift-and-invert spectral transformation �46�, which
spreads out the small eigenvalues by transforming them into
the large magnitude eigenvalues of a related spectral decom-
position having the same eigenvectors.

�3� Following Ref. �10�, determine m according to the
lowest spectral gap satisfying �m /�m−1���, where �� is the
minimum gap parameter. If there is no gap, the algorithm
has determined that there are no clusters and terminates.

�4� Identify the representatives and compute the zeroth-
order solution M0 and w�

0 using the procedure of Sec. II B.
�5� Determine if w�

0 violates any inequality constraints. If
so, iteratively refine M0 to M� using the procedure of Sec.
II C and, via Eq. �6�, compute the refined solution w�

� . Oth-
erwise, w�

� =w�
0 .

�6� Following Ref. �10�, test the solution against the mini-

mum certainty conditions �̄��M�����∀ ��, where �� is the
minimum certainty parameter. If it satisfies them, the solu-
tion is accepted. If not, the eigenspectrum can be tested for
higher spectral gaps, and the algorithm proceeds with step 4.
If desired, the fuzzy solution can be quantized to a hard
clustering by assigning item each i to the cluster having the
largest assignment value; these hard clusters may be recur-
sively analyzed.

IV. RESULTS

We tested the efficiency of our method for uncertainty
minimization by using it for fuzzy spectral clustering of a
family of synthetic data sets containing up to N=20 000
items. Further, we showed that it can be applied to both
symmetric and asymmetric � matrices popular in the litera-
ture.

A. Implementation

The C�� implementation was compiled using GCC ver-
sion 4.1.2 and G77 version 3.3.5 under −03 optimization. It
accesses low-level LAPACK �47� routines through LAPACK��

�48� version 2.5.2, interfaces to the ARPACK �49� Lanczos
solver through the ARPACK�� C�� wrappers �50� and solves
constrained linear programs using the GLPK simplex method
�51� version 4.9. The scaling benchmarks of Sec. IV B were
executed on a dedicated quad CPU 3.46 GHz PENTIUM 4,
configured with 4 GB of RAM and 4 GB of swap space, and
running a 64-bit version of SUSE LINUX. The numerical pre-
cision parameter was �=2.220 45�10−16. The minimum gap
and minimum certainty parameters were set to ��=3 and
��=0.68 �10�. The LP convergence parameter was �LP
=0.001.

B. Computational efficiency and scaling

To evaluate the efficiency and cost scaling of uncertainty
minimization, we applied it to synthetic data sets containing
from 2 to 10 clusters and from 5000 to 20 000 items ar-
ranged in a pyramid of blocks in a two-dimensional
dataspace. For these tests we used the Laplacian � defined by
Eqs. �1� and the definitions of S and D� arising from the
continuous dynamical interpretation of Ref. �10�:

Sij =
e−dij

2 /2�d0
2	

dij
2 �i � j� , �24a�

�D��ii = N−1, �24b�

where dij is the Euclidean distance between items i and j in
the dataspace and d0

2 is a characteristic distance of the prob-
lem:

�d0
2	 = N−1�

i=1

N

di	
2 , �25a�

di	 � min
j�i

dij . �25b�

These problems required up to four invocations of the LP
solver, with the number increasing with m, but not evidently
with N. The log-log plot in Fig. 4 shows that execution time
was proportional to N1.8 with little dependence on m. Execu-
tion time was dominated by the calculation of S and by the
eigensolver �each having roughly equal cost�, with uncer-
tainty minimization contributing �10% of the total in all
problems tested. The largest problem �m=10 and N
=20 000�, which is of the scale of biological microarray gene
expression data sets, only required about 30 s on a commod-
ity processor.

C. General applicability

Uncertainty minimization is applicable to spectral cluster-
ing using any � defined by Eqs. �1�, including unnormalized
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FIG. 4. Log-log plot of elapsed computational time versus N for
synthetic benchmarks. N was varied from 5000 to 20 000 in steps of
1500. The results shown for m=2 ��� and 10 ��� are averages over
five runs and are representative of those for 2	m	10. �The stan-
dard errors of the mean are too small to be discernible.� The dotted
line is the least-squares linear fit and has slope 1.8.
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and normalized forms that are popular in the literature. Of
course, the success of any method will depend on the choices
of S and D�, which are highly problem specific, and we do
not address this issue here. Our goal was to demonstrate the
applicability of uncertainty minimization to this wide range
of formulations. Thus, in addition to the tests described
above using the � of Eqs. �24�, we applied uncertainty mini-
mization to the spiral problem using two other forms of �.
The first one, an asymmetrically normalized Laplacian �
��52� for review� having Sij a Gaussian function of dij, com-
monly arises when a Markovian �17–19,53� rather than a
continuous �10� dynamical interpretation is used. It is speci-
fied by Eqs. �1� with

Sij = e−dij
2/2�2

, �26a�

�D��ii =

�
j

Sji

�
jk

Sjk

, �26b�

where � is chosen by empirical tuning �17–19,53� or heuris-
tics �6,54�. We chose �2= �d0

2	. �This type of �, but with a
non-Gaussian S, also frequently arises in image segmentation
�7,15,16,55� where it is motivated by the “normalized cut”
variant of the min-cut graph partitioning method �7�.� We
also tested the symmetric, unnormalized Laplacian form
��56� for review� of � specified by

Sij = e−dij
2/2�2

, �27a�

�D��ii = N−1. �27b�

This form is popular in graph partitioning problems �e.g.,
very large scale integrated �VLSI� circuit partitioning
�57–59�, parallel matrix factorization �60�, and computa-
tional load balancing �61,62��, where it is used to approxi-
mate the solution to the “ratio cut” variant of the min-cut
graph partitioning method �57�. When applied to graph par-
titioning the Sij are simply edge weights but to apply it to the
spiral data clustering problem the Sij must be computed from
the dij; for this we again used the Gaussian form of Eq. �27a�
because it is popular in dataspace clustering �6�.

Figure 5 shows the results obtained by using uncertainty
minimization for fuzzy spectral clustering of the spiral prob-
lem with the � matrices defined by Eqs. �24�, �26�, and �27�.
In each case the algorithm selected the same three represen-
tatives and the LP solver was invoked twice. While there
were minor differences in the w� along the cluster bound-
aries, the use of all three � gave essentially the same results.
In contrast �panel �d��, the spiral problem confounded
k-means with “extragrades” �which is an outlier-robust vari-
ant of k-means� �63�. As discussed in the introduction, this
failure of k-means is not surprising, given the irregular, in-
terlocking nature of the clusters.

V. DISCUSSION

To date, spectral clustering has been used primarily for
hard partitioning. Prior studies �10,18� have suggested that

fuzzy spectral clustering could be accomplished by using the
m low-frequency eigenvectors of � as a linear basis for ex-
panding, via a transformation matrix M, the fuzzy cluster
assignment vectors w�, where w��i� is the probability that
item i is assigned to cluster �. Korenblum and Shalloway
�10� suggested that M�, the optimal M, is best identified by
uncertainty minimization, which minimizes the probabilistic
overlap between clusters. Uncertainty minimization has the
additional advantage of providing measures �the final values
of the objective function and fractional cluster certainties�
that quantify the quality of a clustering, which can be as
important as the clusterings themselves. However, Koren-
blum and Shalloway did not provide an efficient means of
solving this challenging nonconvex global minimization
problem, which limited their approach to small data sets with
N
O�102� items. Alternatively, Weber et al. �18� suggested
that M could be determined by perturbative approximation
from almost-block-diagonal matrices, but this approach gives
w� that only approximately satisfy the probabilistic con-
straints of Eqs. �5�. Thus, until now there has been no com-
putationally practical, exact fuzzy spectral data clustering
method.

To address this need we developed an efficient method for
uncertainty minimization, which extends the number of
items that can be clustered by at least two orders of magni-
tude: data sets with N
O�104� can now be analyzed within

30 seconds on a commodity processor. Using tests with
synthetic data sets having up to 20 000 items and ten clusters
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FIG. 5. Fuzzy spectral clustering by uncertainty minimization of
the spiral problem using three different � matrices. The fuzzy clus-
terings and clustering eigenvectors, eigenvalues, and assignment
vectors computed using the � matrices specified in �a� Eqs. �24�, �b�
Eqs. �26�, and �c� Eqs. �27� are shown. Representatives are indi-
cated by triangles, circles, and squares in the two left columns. �d�
Application of fuzzy k-means with extragrades �63� to this problem;
arrows identify misclassified items.
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we showed that computational cost scaled 
O�N1.8� and was
insensitive to the number of clusters. This implies that as
many as N
O�106� items can be clustered in modest time
on a serial machine. The additional cost of uncertainty mini-
mization was small compared to costs common to all spectral
clustering methods �e.g., computing � from the dij and com-
puting its low-frequency eigensystem�.

In developing this approach we elucidated the underlying
structure of the uncertainty minimization problem. This re-
vealed fundamental relationships between four different geo-
metric representations: the m-dimensional symmetric M rep-
resentation, the m�m−1�-dimensional asymmetric M
representation, and the �m−1�-dimensional w̄� and �� � rep-
resentations. All are formally equivalent, but each has advan-
tages: The symmetric M representation has the most direct
connection to the minimization problem. The asymmetric M
representation provides a closed feasible region; it is used to
prove that all local minima are at polytope vertices and that
the inequality constraints are evenly distributed between the
clusters at these points. The w̄� representation provides bary-
centric coordinates and makes it evident that the m cluster
representatives in Rc are those items that determine the �m
−1�–simplex of largest hypervolume. The �� � representation
motivates the greedy algorithm used to approximate Rc,
which in turn yields M0, the starting point for refinement to
M�.

The greedy algorithm we used is almost identical to the
“inner simplex method” used in the Perron cluster cluster
analysis method �18,64� for approximate fuzzy data cluster-
ing �65�. However, our motivation for the algorithm and con-
sequently our understanding of its domain of validity are
different. The inner simplex method was motivated by earlier
studies �66,67� on perturbation theory of block-diagonal ma-
trices �34�. These studies exploited two observations: �1� that
the � of well-separated clusters can be brought into almost-
block-diagonal form and �2� that the low-frequency eigen-
vectors of such a � are perturbed only in second order in the
non-block-diagonal terms, and therefore, to this order, pos-
sess a “level structure” in which their components are con-
centrated near m different values. The inner simplex method
aims at finding one item from each level set and thus, in
principle, depends on their existence. In contrast, the analysis
presented here makes no assumptions about level structure
and only presumes that at least one item �i.e., the represen-
tative� can be well assigned to each cluster. An example
where representatives exist, even though matrix perturbation
theory is no longer applicable and the eigenvectors do not
have a level structure, is illustrated in Fig. 6. Even in this
case it is evident that there are three fuzzy clusters although
many of the items will have weak assignments. Thus, the
greedy algorithm is more generally applicable than previ-
ously stated.

In the two-cluster case the M0 solution is always exact,
but in the tested m�2 problems, it always violated some of
the inequality constraints required for a probabilistic inter-
pretation of the w�. These violations were removed by re-
finement. The corrections changed w��i� by 	0.05; so, ex-
cept when high accuracy is needed, the most important role
of the refinement may be to provide a rational method for

ensuring that the w�
0 satisfy the probabilistic constraints.

Deuflhard and Weber �68� used a metastability objective
function for clustering protein conformations collected from
molecular dynamics simulations that is closely related to the

sum of the fractional cluster certainties �̄��M� defined in Eq.
�7�. Their objective function is the sum of terms

�̄��M ;t� �
�w��e−�t�w�	

�1�w�	
,

where t denotes a time period which, in practice, is set to a
multiple of the molecular dynamics integration time step
�69,70�. �̄��M ; t� measures the fractional persistence of prob-
ability within subregion � of conformation space after sto-

chastic evolution for time t and is identical to the �̄��M�
except for the presence of the Markov matrix e−�t, generated
by a � derived from the molecular dynamics data. Thus,

�̄��M� is the t→0 limit of �̄��M ; t�. It is not clear if a
t-dependent objective function is appropriate for clustering
data that does not arise in a dynamic manner, though this
may be worth considering.

Another potentially interesting objective function is the
determinant of M. It is intriguing because of its simple geo-
metric interpretation: we can show that maximizing �M� is
equivalent to maximizing the hypervolume of the
�m−1�-simplex formed in the w̄� representation by any sub-
set of m items �71�. This property is attractive since we ex-
pect a good clustering to spread the items out in this bary-
centric representation as much as possible. However, �M�
does not have a simple information-theoretic interpretation
as does �M�, defined in Eq. �10�: exp�−�M�� is the prod-

uct of the fractional cluster certainties, �̄�, which are nor-
malized to unity when the corresponding cluster is com-
pletely hard, but �M� does not provide a normalized measure
of cluster hardness. Moreover, while optimization using ei-
ther �M� or �M� tends to minimize overlap, optimization of
�M� also tends to equalize the size of the clusters �71�. Al-
though this is not necessarily desirable for data clustering, it
may be of value in graph partitioning applications that seek
to balance partition sizes �7,57�.

Uncertainty minimization and the method for efficiently
solving it presented here are applicable to the wide range of
popular � matrices that satisfy Eqs. �1�. To demonstrate this,

0

0.5

1
w1 w2 w3

(a)

w1 w2 w3

(b)

FIG. 6. Assignment vectors for a three-cluster problem for
eigenvectors with or without a “level structure.” Eigenvectors aris-
ing from almost-block-diagonal � have a level structure leading to
“almost-hard” assignment vectors such as those shown in panel �a�.
�Different symbols are used for the three assignment vectors.� When
there is no level structure, the assignment vectors are much softer,
as in panel �b�. However, even in this case representatives �identi-
fied by arrows� exist.
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we applied uncertainty minimization to the spiral data set, a
convenient two-dimensional example with visually discern-
ible irregularly shaped clusters, using one asymmetric and
two symmetric forms of �. The resulting fuzzy spectral clus-
tering gave similar results with all three � matrices, while
k-means did not provide a valid clustering. Of course, these
particular forms may not be suitable for all data sets—as in
hard spectral clustering, � must often be tailored to the prob-
lem. Our goal here was to demonstrate the ability of uncer-
tainty minimization to efficiently fuzzify spectral clustering
methods. It can now be applied to a wide variety of problem-
specific domains, such as those noted in the introduction.
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APPENDIX A: � PRECONDITIONING

Numerical errors in computing the eigensystem increase
with �N−1 /�1 and, if this ratio is too large, can obscure dif-
ferences between very small eigenvalues and obfuscate the
spectral gap. This can occur if two items within a cluster are
exceedingly close �and hence communicate very rapidly� or
if clusters are nearly isolated �and hence communicate very
slowly�. The latter situation can also occur if the data contain
outliers—items that are distant from the bulk of the items.
We avoid these problems by preconditioning � and, at the
same time, improve computational efficiency by sparsifying
it �i.e., by setting very small transition rates exactly to zero�.
�This reduces memory requirements and improves cache per-
formance and eigensolver efficiency so that uncertainty mini-
mization may be practically applied to large problems. For
example, for the largest of the scaling benchmarks consid-
ered in Section IV B. �i.e., m=10 and N=20 000�, the spar-
sified � matrix held less than 650 000 independent elements,
representing a storage reduction in a factor of 
300.� This
involves three steps: �1� determine appropriate upper �dhi�
and lower �dlo� bounds on the dij, �2� sparsify � using dhi and
check for any resultant graph disconnections, and �3� evalu-
ate the remaining matrix elements and truncate the large-
magnitude elements using dlo, compute �1, bound �N−1, and
confirm that �N−1 /�1 is properly constrained. If it is not, dlo
is increased so that it will be. �Increasing dlo was not re-
quired for the examples in this paper, but this step is included
as a precaution.�

To avoid excessive numerical error, we want to adjust �
so that

��

�1
� � , �A1�

where �� is the expected computational error in the eigen-
values and � is the desired fractional precision, e.g.,

O�10−2�. Typically �47,49�

�� � ��N−1,

where � is machine precision. So Eq. �A1� will be satisfied if

�N−1

�1
� �/� . �A2�

We expect that �N−1 /�1 will depend on ��hi� / ��lo�, the ratio of
the largest to the smallest nonzero ��i�j�, and one way to
satisfy Eq. �A2� would be to limit this ratio. However, when
clustering data, e.g., as in the examples of this paper, com-
puting the �i�j from the dij constitutes a significant fraction
of total cost because exponentiation is required �at least for
forms of S in Eqs. �24�, �26�, and �27��, and this is wasted for
the large fraction of the �i�j that are zeroed during precon-
ditioning. Therefore, instead of directly limiting ��hi� / ��lo�,
we gain the same result by limiting dhi /dlo, the ratio of the
largest to the smallest dij. This allows us to sparsify before
evaluating all but a few matrix elements. This indirect ap-
proach is not needed when applying uncertainty minimiza-
tion to spectral clustering of graphs where S is specified a
priori and, hence, all elements of � can be inexpensively
computed.

1. Determining dhi and dlo

Although a rigorous a priori bound on �N−1 /�1 depends
on N as well as on ��hi� / ��lo�, we expect that in most cases
the two ratios will be roughly of the same order of magnitude
since ��hi� and ��lo� set the scales of the fastest and slowest
dynamical processes in the system �72�. Thus, we can hope
to satisfy Eq. �A2� by requiring that

��hi�
��lo�

= �/� �not used� . �A3�

However, when � is asymmetric �i.e., �D��ii�1 /N as in Eq.
�26��, then even this requirement cannot be imposed until D�

is evaluated, and this would require costly evaluation of all
the �i�j prior to sparsification. Thus, instead we apply Eq.
�A3� to �S:

��hi
S �

��lo
S �

= �/� . �A4�

We expect this to be adequate because in most cases multi-
plying by D�

−1 will result in ��hi� / ��lo�	 ��hi
S � / ��lo

S �. �This in-
deed is the case for the examples we have considered.� How-
ever, exceptional sets of dij can be constructed where it will
not, so this is not guaranteed. Nonetheless, we use Eq. �A4�
because of its reduced cost and the guarantee that Eq. �A2�
will ultimately be satisfied by the confirmation and possible
iteration steps described in Appendix A 3.

To minimize the effect of preconditioning on the rest of
the eigensystem, we multiplicatively center ��hi

S � and ��lo
S �

around ��mid
S �, a typical midrange rate. That is, we require

��mid
S �

��lo
S �

=
��hi

S �
��mid

S �
. �A5�

We determine ��mid
S � by noting that ��i�

S �, the magnitude of
the largest �i�j

S in row i, is the largest transition rate connect-
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ing i to other items. Thus, the median of the ��i�
S � is a rea-

sonable choice for ��mid
S �. Because ��i�j

S � depends monotoni-
cally on dij �e.g., see Eqs. �24�, �26�, and �27��, this is
equivalent to ��mid

S �= ��S�med�di	���, where med�di	� is the
median of the �di	�, the smallest off-diagonal elements in
each row of the dij matrix. Thus, determining ��mid

S � requires
computing only one element of �S. Once this has been done,
Eqs. �A4� and �A5� can be combined to give

�lo
S = ��mid

S ���/� , �A6a�

�hi
S = ��mid

S ���/� . �A6b�

We then numerically invert �ij
S �dij� �e.g., using one of Eqs.

�24�, �26�, and �27�� with �ij
S →−��lo

S � and �ij
S →−��hi

S � to de-
termine dhi and dlo, respectively.

2. Sparsification and connected component analysis

�S is sparsified by setting all off-diagonal elements having
magnitudes less than �lo

S to zero. That is,

�i�j
S → 0 �if dij � dhi� .

To test if this disconnects the graph, we perform a standard
connected component analysis �73�. This initially assigns
items to individual sets and then iteratively merges sets
whenever any of their respective members are connected. If
distinct subsets �i.e., disconnected components� remain at the
end, the algorithm creates hard assignment vectors identify-
ing them. �This process may remove outliers.� Larger subsets
may be analyzed as new clustering problems of their own.

3. Truncation and checking the eigenvalue range

Having sparsified the �typically large� fraction of insig-
nificantly small off-diagonal elements, we now evaluate the
remaining �i�j

S while truncating their maximum magnitudes
using

�i�j
S → − ��hi

S � �if dij 	 dlo� ,

and compute D� and �. We can then compute �1 using a
Lanczos solver �see Sec. III� and bound �N−1 using the Ger-
shgorin circle theorem �74� and Eqs. �1c� and �1d� to

�N−1 � 2 max��ii� . �A7�

If �1 and the Gershgorin bound on �N−1 satisfy Eq. �A2�,
then preconditioning is complete. If not, dlo, and hence ��hi

S �,
is adjusted so that it will be satisfied when the ��i�j

S � are
truncated to the new bound and � is recomputed. Precondi-
tioning is now complete.

APPENDIX B: VARIOUS PROOFS

1. Even distribution of active inequality constraints

We prove here that each cluster must be constrained by
exactly m−1 inequality constraints at each local minimum of
 in the feasible region. Consider a local minimum M� �free in
the asymmetric M representation discussed in Sec. II A. Ko-
renblum and Shalloway �10� have already proved that this

must be at a vertex of the feasible polytope. The coordinates
at the local minimum of the individual free particles, M� �

��1
��	m�, satisfy the inequality constraints of Eq. �11a�, but
their homogeneity means that they will also be satisfied for
any ��M� � with ���0. Thus, the free particle inequality con-
straints acting alone leave the m−1 degrees of freedom ��

unspecified and are inadequate to force M� �free to be at a
vertex of the feasible polytope. Therefore, at least m−1 ad-
ditional active constraints must come from the inhomoge-
neous inequality constraints associated with the slave particle
�Eq. �13��. However, the choice of the slave particle in Eq.
�12� is arbitrary. Therefore, every particle must have at least
m−1 active inequality constraints. But since only m�m−1�
inequality constraints are active at a vertex, each of the m
particles must have exactly m−1 inequality constraints ac-
tive. This proof extends to every vertex of the feasible poly-
tope except for those vertices where at least one of the M� �

�

=0 �since multiplying such an M� �
� by �� has no effect�. This

proof does not preclude the possibility that a single item may
be associated with multiple active constraints; i.e., it is pos-
sible that w��i�=0 and w��i�=0 are both active constraints.
�This is the case for the solution to the spiral problem �Figs.
3�c� and 3�d�� where w2�r1�=0=w3�r1� and also w1�r2�=0
=w3�r2�.�

2. Invertibility of �R

We prove here that there is at least one subset of m items
R such that �R is invertible. We define the m�N matrix �
by �ni��n�i� �0�n	m ;1� i�N�. Since its m rows �i.e.,
the low-frequency eigenvectors� are linearly independent, �
has rank m. Therefore, � also has at least m linearly inde-
pendent columns. If the items corresponding to these col-
umns are selected to comprise R, then the m�m matrix �R

has full rank and is therefore invertible.

3. Invertibility of M

We prove here that each M corresponding to a local mini-
mum of  within the feasible region is invertible. As proved
in Appendix B 1, at any such minimum each cluster has m
−1 active inequality constraints: m−1 items lie on each of
the m faces of the bounding simplex in the w̄� representation.
Consider a subset R that contains one item from each face. It
defines an �m−1�-simplex �inscribed within or identical to
the bounding simplex� with nonzero hypervolume. This hy-
pervolume is proportional to �WR�, implying that �WR��0
and, with Eq. �17�, implying that �M��0. Thus, M is invert-
ible.

Actually, the proof holds for every M having all M� ��0
that lies at a vertex of the feasible polytope in the asymmet-
ric M representation since Appendix B 1 applies to all such
M, not only those at local minima.

4. Bounding simplex in the �� � representation

Analogously to Eq. �14�, we may write

Wvert = M � �vert, �B1�

where the columns of �vert are the coordinates of the bound-
ing simplex vertices in the low-frequency eigenvector repre-
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sentation and Wvert is the matrix whose rows are the coordi-
nates of the vertices in the w̄� representation; i.e., Wvert= I.
Inverting this gives �vert=M−1. When M =M0, Eqs. �19b�
and �B1� imply that �vert=�Rc, which is consistent with the
zeroth-order placement of the representatives at the vertices.
When M =M�, the vertices may not correspond to item loca-
tions, but, as proved in Appendix B 3, M� is invertible so
�vert= �M��−1. In both cases, the simplex vertex coordinates
in the �� � representation are given by the columns of �vert

with the first row omitted. �Just as for �R, all elements in the
first row of �vert are one for any invertible M, in particular,
for M0 and M� �75�.�

5. Same ordering of item points in the w̄� and �� �

representations

To simplify the proof of identical ordering, we use the
spiral problem illustrated in Fig. 3 as a specific example; the
proof is easily generalized. We index the vertices in the w̄�

representation as described in Sec. II B 2. For example, the
top vertex in panel �c� is vertex 3, and we denote it as v3. We
carry the same indexing over to the �� � representation.

Ordering the items according to their distances from the
simplex faces is easy in the w̄� representation: because it
provides barycentric coordinates, the distance of a point i
from the side opposite vertex � is just w��i�, with the sign
negative if the point lies outside the simplex. The w̄� order-
ing can be related to the �� � ordering in a few steps. First,
note that the distance of point i from the side opposite v2 is
linearly related to the area of the triangle having vertices at
points i, v1, and v3, with sign depending on triangle orienta-
tion. This signed area is proportional to the ratio of determi-
nants

A =
�w̄�i� � �̂1 � �̂3�
��̂2 � �̂1 � �̂3�

,

where w̄�i� � �̂1 � �̂3 is the 3�3 matrix formed by stacking
the three row vectors and the denominator �which will al-
ways be �1� ensures the correct sign. Second, note that since

w̄�i� � �̂1 � �̂3 = M � ��� �i� � �� v1
� �� v3

� ,

�̂2 � �̂1 � �̂3 = M � ��� v2
� �� v1

� �� v3
� ,

where �� vk
is the m-vector having the coordinates of vertex vk

in the low-frequency eigenvector space,

A =
��� �i� � �� v1

� �� v3
�

��� v2
� �� v1

� �� v3
�

. �B2�

Third, since all the m-vectors in Eq. �B2� have their zeroth
component equal to one, A is proportional to the signed area
of the triangle having vertices i, v1, and v3 in the �� � repre-
sentation. Fourth, this area is proportional to the distance of

point i from the side opposite to v2 in the �� � representation.
Combining all these proportionalities proves that the distance
of point i from the side opposing a vertex in the w̄� repre-
sentation is proportional to its distance in the �� � representa-
tion.

APPENDIX C: GREEDY ALGORITHM FOR SELECTING
R

The goal of the algorithm is to choose the subset of items
R that approximately defines the �m−1�-simplex having
maximum hypervolume Vm−1 in the �� � representation. If the
hypervolume Vm−2 of one face of the simplex is already de-
termined, Vm−1 is proportional to the distance of the excluded
vertex from that face. �For example, in the case of a
2-simplex �a triangle�, this is the familiar area=1 /2 base
�height rule, where “base” is the length of the determined
simplex face and “height” is the distance of the other point
from that face.� This suggests a natural greedy algorithm: �a�
initialize by finding the �q−1=1�-simplex of greatest length,
�b� extend the �q−1�-simplex to a q-simplex by finding the
item that is furthest from the hypersurface that embeds the
�q−1�-simplex, �c� q←q+1 and return to step �b� until q
=m.

Specifically,

1. Initialize

Select the two items i1 and i2 that maximize ��� ��i2�
−�� ��i1��,

R = �i1,i2� ,

q = 2.

2. Repeat while q	m

�a� Select the item iq+1 that maximizes

d��iq+1� = �Pq�� ��� ��iq+1� − �� ��i1��� ,

where

Pnn�
q = Inn� − �

q�=2

q ��� ��iq�� − �� ��i1��n��� ��iq�� − �� ��i1��n�

��� ��iq�� − �� ��i1��2
,

�b� R←R� iq+1, and �c� q←q+1.
Here �� denotes the inner product within the

�m−1�-dimensional �� � space and Pq is the projection matrix
in this space that removes the components of ��� ��iq+1�
−�� ��i1�� that lie within the subspace containing the
�q−1�-simplex. Therefore, d��iq+1� is the distance of
�� ��iq+1� from the subspace, and the q-simplex formed by
adding �� �iq+1� as a vertex is that of maximum hypervolume
containing the previously computed �q−1�-simplex as one of
its faces.
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